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SUMMARY

A new semi-staggered �nite volume method is presented for the solution of the incompressible Navier–
Stokes equations on all-quadrilateral (2D)=hexahedral (3D) meshes. The velocity components are de�ned
at element node points while the pressure term is de�ned at element centroids. The continuity equation
is satis�ed exactly within each elements. The checkerboard pressure oscillations are prevented using
a special �ltering matrix as a preconditioner for the saddle-point problem resulting from second-order
discretization of the incompressible Navier–Stokes equations. The preconditioned saddle-point problem
is solved using block preconditioners with GMRES solver. In order to achieve higher performance
FORTRAN source code is based on highly e�cient PETSc and HYPRE libraries. As test cases the
2D=3D lid-driven cavity �ow problem and the 3D �ow past array of circular cylinders are solved in
order to verify the accuracy of the proposed method. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A primitive variable-based �nite volume method is presented for solution of the incompres-
sible Navier–Stokes equations on all-quadrilateral=hexahedral meshes. A semi-staggered grid
arrangement is used for the primitive variables. This choice leads to better pressure coupling
compared to the non-staggered (collocated) approach while being capable of handling non-
Cartesian grids. In addition, it eliminates the need for a pressure boundary condition since
it is de�ned at interior points. Furthermore, the summation of the continuity equation within
each element can be exactly reduced to the domain boundary, which is important for the
global mass conservation. But the most appealing feature of the method is leading to very
simple algorithm consistent with the boundary and initial conditions required by the Navier–
Stokes equations. Recently, the semi-staggered arrangement of variables has been used by Rida
et al. [1], Kobayashi et al. [2], Wright and Smith [3], and Smith and Wright [4] for triangular,
quadrilateral and hybrid meshes in 2D.
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Although, the semi-staggered grid arrangement has better pressure coupling it may lead to
the checkerboard pressure �eld particularly on all-quadrilateral=hexahedral meshes. This prob-
lem arises when second-order central di�erence is used for both the continuity and the pressure
gradient operator in the momentum equation. Various approaches have been used to overcome
this problem. Baliga and Patankar [5] proposed to use unequal-order interpolation. Russell and
Abdallah [6] increased the order of the gradient term in the momentum equation and enlarged
the stencil for the pressure Poisson equation. Another approach used by Kobayashi et al.
[2] is based on the reconstruction of pressure �eld from the converged velocity �eld with
oscillatory pressure. The most common approaches involve the derivation of non-conservative
pressure Poisson equation [7–9]. As indicated by Prakash and Patankar [10], unequal-order
approximation leads to a very coarse mesh for the pressure and it may not be very accurate.
The problem with non-conservative approaches is that high-pressure gradients result in high
values of the fourth-order pressure derivatives and thus a signi�cant mass source is generated.
In the present paper we propose to use a simple �ltering matrix as a preconditioner, which
essentially enlarges the stencil similar to that of Russell and Abdallah [6] in order to prevent
the checkerboard pressure oscillations. However, this enlargement does not pose any di�culty
for coding since it is introduced as a result of preconditioning.
Unlike the previous works in References [1–4] we used all-quadrilateral=hexahedral meshes.

Although all-hexahedral mesh generation for a general geometry is still a di�cult task com-
pared with other elements such as tetrahedral, pyramid, etc., there are several reasons for using
all-hexahedral elements [11]. First, hexahedral meshes perform quite well when local mesh
is strongly anisotropic such as boundary layers. Second, they are more accurate and e�cient
for a �xed number of grid points. In addition, the use of cell-centred discretization with other
elements causes the number of unknowns to increase signi�cantly for a same number of mesh
points. In fact, this is the case for the pressure term in our semi-staggered discretization. For
numerical discretization a second-order accurate �nite volume method is used. The resulting
system of equations leads to the well known saddle-point problem [12, 13]. Here we used pre-
conditioned iterative solvers based on block factorization, which leads to more robust solution
techniques [14–18] compared to SIMPLE, SIMPLER, etc. type decoupled solution techniques.
Convergence of these decoupled solution techniques can often be problematic and may even
result in nonconvergence.
The present paper is organized as follows: Section 2 provides some details of the present

�nite volume method with preconditioned iterative solvers and pressure coupling in order to
prevent the checkerboard pressure oscillations. In Section 3, the proposed method is applied
to the well-known 2D=3D lid-driven cavity problem and the 3D �ow past array of cylinders
in a square channel. Concluding remarks are provided in Section 4.

2. MATHEMATICAL AND NUMERICAL FORMULATION

2.1. Discretization of governing equations

The governing equation of incompressible viscous �ow consists of the incompressible Navier–
Stokes equations which may be written in dimensionless form as

@u
@t
+ (u · ∇)u+∇p= 1

Re
∇2u (1)
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Figure 1. Two-dimensional unstructured mesh with a dual
control volume surrounding a node P.

and the continuity equation

−∇ · u=0 (2)

In these equations, u represent the velocity vector, p is the pressure and Re is a Reynolds
number. Integrating the di�erential equations (1) and (2) over an arbitrary irregular control
volume � gives∫

�

@u
@t
dV +

∮
@�
(n · u)u dS +

∮
@�
np dS =

1
Re

∮
@�
n∇u dS (3)

−
∮
@�
n · u dS = 0 (4)

The n represents the outward normal vector, the V is the control volume and the S is the
control volume surface area. In the present paper we restricted ourself to the discretization
of 2D �ows and its extension to 3D is straightforward. Figure 1 illustrates typical four node
quadrilateral elements with a dual �nite volume constructed by connecting the centroids ci of
the quadrilateral elements which share a common vertex. The discrete contribution from cell
c1 to cell c2 for the momentum equation is given by

[
un+1P + un+11 + un+12

3�t
− unP + u

n
1 + u

n
2

3�t

]
VP12 +

[
n12 · u

n
1 + u

n
2

2

]
un+11 + un+12

2
S12

+n12
pn+11 + pn+12

2
S12 − n12 ∇un+11 +∇un+12

2Re
S12 (5)

where VP12 is the area between the points P, c1 and c2, and S12 is the length between the
points c1 and c2. In a similar way other contributions can also be computed. The velocity
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vector at the element centroids ci is computed from the element vertex values using simple
averages and the gradient of velocity components are calculated from Green’s Theorem:

∇ui= 1
Vi

∮
@�i
nu dS (6)

where the line integral on the right-hand side of Equation (6) is evaluated using the mid-
point rule on each of the element faces. The continuity equation is also integrated in a similar
manner within each elements. The discretization of the above equations leads to a saddle-point
problem of the form [

A11 A12

A21 A22

] [
u

p

]
=

[
b1

b2

]
(7)

where A11 is the convection di�usion operator, A12 is the pressure gradient operator and A21 is
the divergence operator. Here A22 and b2 are zero and A12 �= AT21. Although the system matrix
of (7) is inde�nite due to zero diagonal block, recent results indicate that inde�niteness of the
problem does not represent a particular di�culty and a recent review of the iterative methods
for solving large saddle-point problems may be found in References [12, 13].

2.2. Iterative solvers

The �rst approach is the reduction of the saddle-point problem to a Schur complement system,
which is based on elimination of the primary unknowns:

[A21A−1
11 A12]p=A21A

−1
11 b1 (8)

System (8) is solved by using GMRES [19] with preconditioning which accelerates the rate
of convergence of the original problem. Here, we use the approximate Schur inverse precon-
ditioner proposed by Elman [14]:

[A21A12]−1[A21A11A12][A21A12]−1 (9)

This preconditioned iterative solver requires solution of two pressure Poisson and one
convection–di�usion subproblems per outer iteration. The solutions of these subproblems
are signi�cantly easier to solve than the entire coupled system. Although, the preconditioner
�rst developed by Kay and Loghin and considered further by Kay et al. [20] and Silvester
et al. [21] requires solution of only one pressure Poisson subproblem, it requires construction
of other matrices and therefore its application is not straight forward. Additionally, in Refer-
ence [15] it is shown that for small time steps Elman preconditioning gives a better rate of
convergence.
The second approach is a dual approach that is based on the elimination of the secondary

unknown [17, 18]. Here u is expressed as

u=[I − A12(A21A12)−1A21]u2 (10)

and u2 is computed from the solution of the following projected system:

[I − A12(A21A12)−1A21]A11[I − A12(A21A12)−1A21]u2 = [I − A12(A21A12)−1A21]b1 (11)
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To accelerate the rate of convergence of the above equation we use the inverse of A11 as a right
preconditioning matrix. As far as the author’s knowledge goes this preconditioning is used
for the �rst time in the literature. This preconditioner is based on our numerical experiments
which indicated that the coe�cients of A12(A21A12)−1A21 matrix are several orders less than
the coe�cients of identity matrix I . We solve the above system using GMRES with the
preconditioning matrix A−1

11 , and it also requires solution of two pressure Poisson and one
convection–di�usion subproblems. However, the GMRES storage requirement for the dual
approach is larger since the velocity vector u2 is bigger.
Although the preconditioning matrices signi�cantly reduce the number of outer iterations,

pressure Poisson and convection–di�usion subproblems need to be solved e�ciently. Here, the
implementation of the preconditioned Krylov subspace solution algorithm was done using the
software package PETSc developed at the Argonne National Laboratory [22]. The precondi-
tioning matrices were obtained from HYPRE developed at the Lawrence Livermore National
Laboratory [23]. We used BoomerAMG preconditoner [24] for the pressure Poisson equation
and parallel ILU(k) proconditioner [25] for the convection–di�usion subproblem.

2.3. Pressure coupling

The semi-staggered discretization of the momentum equations gives all-nonzero pressure co-
e�cients unlike the non-staggered grid arrangement. However, when multiplied with the con-
tinuity equation, it produces a pressure Poisson equation with non-zero coe�cients only in
the diagonal direction as shown in Figure 2(b) for a uniform Cartesian mesh. This kind
of operator cannot sense constant pressure �eld with constant oscillations at diagonal lines
and leads to two di�erent pressure �elds. A similar problem also exists in the non-staggered
case as shown in Figure 2(a). Prakash and Patankar [10] presented four di�erent (odd–odd,
even–even, odd–even and even–odd) solutions for the non-staggered grid arrangement. How-
ever, the staggered grid arrangements of Harlow and Welch [26] shown in Figure 2(c) can
sense these pressure oscillations and lead to unique pressure �eld. The situation on nonuni-
form Cartesian meshes is slightly better since nonuniform meshes produce all-nonzero pressure
Poisson equation coe�cients for the semi-staggered grid arrangement, but still diagonal coe�-
cients are dominant. This coupling may be enough to prevent the pressure oscillations in case
pressure �eld is nonsingular (p �= ±∞), such as buoyancy-driven cavity �ow, �ow past a
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11

1
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1

1

Figure 2. Computational molecules for two-dimensional pressure Poisson equation:
(a) non-staggered; (b) semi-staggered; and (c) staggered cases.
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964 M. SAHIN

circular cylinder, etc., depending on the amount of mesh stretching. Unstructured meshes have
better characteristics, but it is di�cult to rely on highly nonlinear connectivity information.
In the past, Russell and Abdallah [6] used fourth-order approximation to the pressure gra-

dients in the momentum equations in order to prevent the checkerboard pressure �eld while
satisfying the continuity equations exactly. On unstructured meshes this is a complicated task.
In the present paper, we propose to use a simple �ltering matrix as a preconditioner, which
alters the pressure Poisson equation coe�cient weights and enlarges the stencil. The present
�ltering matrix is based on our numerical observations, which showed that control volume
surface pressure values interpolated from element centroids are extremely smooth for the
given discretization in Section 2.1. Using this information, we construct control volume sur-
face centre pressure values from the pressure values at element centroids and then reconstruct
the original pressure �eld from the pressure values at control volume surfaces, which is the
modi�ed smooth pressure �eld p∗:

p∗=P22p (12)

Actually, the �ltering matrix P22 is similar to the restriction operator in the multigrid method.
However, the restriction operator is not from �ne mesh to coarse one but itself. In 2D half-
weighting (HW) and full-weighting (FW) restriction operators can be written in a square
mesh as

1
8

⎡
⎢⎢⎣
0 1 0

1 4 1

0 1 0

⎤
⎥⎥⎦ (HW)

1
16

⎡
⎢⎢⎣
1 2 1

2 4 2

1 2 1

⎤
⎥⎥⎦ (FW) (13)

Using the above restriction operators we construct the �ltering matrix P22 and use it as a
preconditioner: [

I 0

0 P22

] [
A11 A12

A21 0

] [
u

p

]
=

[
I 0

0 P22

] [
b1

0

]
(14)

Then the modi�ed saddle-point problem becomes[
A11 A12

A∗
21 0

] [
u

p

]
=

[
b1

0

]
(15)

where A∗
21 =P22A21. To solve the above equations we used the iterative solvers given in

Section 2.2, but replaced A21 with A∗
21. The modi�ed semi-staggered pressure Poisson oper-

ators with half-weighting and full-weighting become as in Figure 3. In these computational
molecules both odd and even grid points are included. Theoretically, these computational
molecules also admit the checkerboard pressure �eld as in the work of Russell and Abdallah
[6]. However, the weights are signi�cantly altered and it seems to be enough to suppress the
checkerboard pressure oscillations for the presented numerical results. It may be possible that
one can get a dilation free solution without the P22 �ltering matrix and then use the modi�ed
pressure �eld p∗ or reconstruct the pressure �eld as in Reference [2]. Another approach might
be computation of a dilation-free velocity �eld using the dual approach and then computation
of the pressure �eld from non-conservative pressure Poisson equations.
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Figure 3. Computational molecules for the semi-staggered two-dimensional pressure Poisson
equation with half-weighting (HW) and full-weighting (FW).

3. NUMERICAL EXPERIMENTS

In this section, the proposed method is applied to the well-known 2D=3D lid-driven cavity
problem and the 3D �ow past array of circular cylinders in a square channel. The present
numerical results are obtained by using Euler implicit time marching given in Section 2.1.
The lid-driven cavity problem is well documented in the literature and its detailed descrip-

tion may be found in References [27, 28]. For the 2D lid-driven cavity problem we used both
structured and unstructured meshes given in Figure 4. Both meshes have the same number
of nonuniform grid points at each cavity edges. The structured mesh consists of 10 201 node
points and 10 000 elements while the unstructured mesh consists of 5354 node points and
5153 elements. In order to show the e�ect of the �ltering matrix on the structured mesh, we
solve Stokes �ow within a square cavity since the pressure at the lower part of the cavity
is almost constant and it reveals pressure oscillations easily. The computed pressure �eld is
given in Figure 5 without the �ltering matrix and with the �ltering matrix. As it may be
seen, signi�cant smoothing is achieved with the �ltering matrix on the structured mesh. The
computed pressure �elds are also presented on four di�erent meshes in Figure 6 for the same
problem in order to show the e�ectiveness of the present approach for di�erent mesh reso-
lutions. The present approach seems to be capable of producing smooth pressure �elds for
all meshes including the coarse one. For the unstructured mesh it may be possible to get a
smooth pressure �eld without the �ltering matrix because it is not possible to separate odd
and even mesh points from each other due to their highly nonlinear connectivity information.
Therefore, unstructured meshes have a tendency to suppress the checkerboard pressure os-
cillations. However, the connectivity information is highly nonlinear and it is di�cult to set
a priori. A comparison of the computed primitive variables with the �ltering matrix is given
in Figure 7 for both meshes for the lid-driven cavity �ow at Re=1000. Both results are
almost same; however, degrees of freedom for the unstructured mesh is signi�cantly lower.
For these converged solutions we did not observe any dependency on the time step �t as
expected. For a more accurate comparison, the velocity components are compared at the
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Figure 4. Computational structured (left) and unstructured (right) meshes used for the cal-
culation of the lid-driven cavity problem. The structured mesh: 10 201 node points and

10 000 elements. The unstructured mesh: 5354 node points and 5153 elements.

Figure 5. Computed cell centre pressure contours for the lid-driven Stokes �ow without the
�ltering matrix P22 (left) and with the �ltering matrix P22 (right) on the structured mesh.

vertical and horizontal centrelines of the cavity with the results of Ghia et al. [27] in Figure
8. The comparison shows good agreement, considering the fact that we have leaks at the upper
corners. Further improvement is possible using a mesh similar to that of Reference [28].
In addition to our numerical results for the 2D lid-driven cavity problem, we present some

results in order to examine the convergence of the preconditioned iterative block solvers given
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21x21 41x41

81x81 161x161

Figure 6. Computed cell centre pressure contours on di�erent meshes with the �ltering
matrix P22 for the lid-driven Stokes �ow.

in Section 2.2 at Re=1000. In Table I the required number of outer iterations is given in order
to reduce the relative residual to 10−8 for the �rst iteration, which corresponds to Stokes �ow,
and for the last iteration which corresponds to the converged solution at Re=1000. For these
steady-state calculations we found that both methods have similar convergence characteristics.
In these calculations the initial solution is set to zero and the number of outer iterations can be
signi�cantly reduced by setting the initial solution to the previous outer iteration solution. In
Table IIthe e�ect of time step �t to the number of outer iteration is given for several meshes.
It seems that there are two limiting values corresponding to �t → 0 and �t → ∞ for each
mesh. As the time step decreases the required number of outer iterations are signi�cantly

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:959–974
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Figure 7. Comparison of computed primitive variables (pressure, u velocity and v
velocity) on the structured (left) and unstructured (right) meshes for the lid-driven

cavity problem at Re=1000.
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Figure 8. Comparison of computed velocity pro�les with the result of Ghia et al. [27]
through the vertical and horizontal centrelines of the cavity at Re=1000.

Table I. Number of outer iterations for the Schur complement and the dual approach.

Schur complement Dual approach

Mesh First iteration Last iteration First iteration Last iteration

21× 21 10 29 10 31
41× 41 13 36 14 37
81× 81 17 45 18 49
161× 161 22 100 26 108

The �rst iteration corresponds to Stokes’ �ow and the last iteration corresponds to the converged
solution at Re=1000. The relative residual is 10−8.

Table II. Number of outer iterations for the Schur complement and the dual approach with di�erent
time step �t for the converged solution at Re=1000 on di�erent meshes.

Schur complement Dual approach

�t 21× 21 41× 41 81× 81 161× 161 21× 21 41× 41 81× 81 161× 161
10−4 6 6 6 6 6 7 6 6
10−3 6 6 6 6 6 7 6 6
10−2 6 6 6 6 6 6 6 6
10−1 8 8 8 10 8 8 8 10
100 12 13 15 20 12 14 16 21
101 24 30 36 58 26 31 37 69
102 29 35 42 83 30 36 46 96
103 29 35 45 98 31 37 49 108
104 29 36 45 100 31 37 49 108
∞ 29 36 45 100 31 37 49 108

The relative residual is 10−8.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:959–974



970 M. SAHIN

Number of outer iterations

R
es

id
u

al
 p

0 5 10 15 20 25 30 35 40 45 50
10

10

10

10

10

10

10

10

10

10

Number of outer iterations

R
es

id
u

al
 u

2

0 5 10 15 20 25 30 35 40 45 50
10

10

10

10

10

10

10

10

-8

-7

-6

-5

-4

-3

-2

-1

0

1

dt=0.0001
dt=1
dt=inf

-8

-6

-4

-2

0

2

4

6

dt=0.0001
dt=1
dt=inf

Figure 9. Converge of outer iterations on a 81× 81 mesh for the Schur complement (left)
and the dual approach (right) with di�erent time step �t at Re=1000.

reduced and the similarities in the rate of convergence for both methods may be seen in
Figure 9 as well. However, we found that the dual approach satis�es the solenoidal velocity
constrain better for the same relative residual and this is independent from the number of outer
iterations unlike to Schur complement method. In Table III the computed extreme values of
∇·u are given as a function of mesh resolution and time step.
The 3D lid-driven cubic cavity problem is solved to establish the reliability and accuracy of

the proposed method by way of cross-checking the data against the available three-dimensional
results in the literature [29, 30]. Although the geometry is very simple, the �ow �eld can be
quite complex. A structured nonuniform mesh with 41× 41× 41 node points is used. The
present method is also capable of producing smooth pressure �eld as may be seen from iso-
baric surfaces in Figure 10. The extreme values of pressure occur at the upper corners, while
a low pressure �eld is observed in the region corresponding to the primary vortex. The com-
puted velocity components along the vertical centreline at Re=400 are compared with the
calculations of Jiang et al. [29] and as demonstrated in Figure 11, the present numerical results
compare well. At this Reynolds number, the three-dimensional computed velocity �eld is sig-
ni�cantly di�erent from the two-dimensional calculations even on the vertical symmetry plane.
A more complex 3D �ow past array of circular cylinders in a square channel is also solved

in order to demonstrate how well the present numerical method behaves. A computational
mesh shown in Figure 12 with 37 180 node points and 31 728 hexahedral elements is used.
All the dimensional length scales are nondimensionalized with the cylinder diameter D. The
computational domain starts 8D upstream of the central cylinder and fully developed �ow
conditions are imposed using the analytical solutions:

u(y; z) = 1:7511×
∞∑

i=1;3;5; :::
(−1)(i−1)=2

[
1− cosh(i�z=2H)

cosh(i�W=2H)

]
×

[
cos(i�y=2H)

i3

]
(16)

v(y; z) =w(y; z)=0
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X

Y

Z

Figure 10. Computed cell centre pressure contours for the lid-driven cubic cavity
at Re=400 with a 41× 41× 41 mesh.
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Figure 11. Comparison of computed velocity pro�les with the result of Jiang et al. [29]
through the vertical and horizontal centrelines of the cubic cavity at Re=400.
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Figure 12. Computed 3D cell centre pressure contours at Re=40 for array of circular
cylinders with D=H =0:5 and H=W =1:0.

Here, the maximum inlet velocity is unity. The computational domain ends 20D downstream of
the central cylinder and outlet boundary conditions are set to natural (traction-free) boundary
conditions:

1
Re
@u
@x
=p;

@v
@x
=0;

@w
@x
=0 (17)

On the square channel walls and circular cylinders no-slip boundary conditions are used. The
computed cell centre pressure �eld at Re=40 is given in Figure 12. Although this test case
is a rather complex one, the presented isobaric surfaces are smooth.

4. CONCLUSIONS

A new unstructured semi-staggered �nite volume method is presented for the solution of the
incompressible Navier–Stokes equations with exact mass conservation within each element.
The checkerboard pressure oscillations are alleviated using a simple �ltering matrix based on
linear interpolations. The saddle-point problem resulting from second-order discretization of the
incompressible Navier–Stokes equations is solved e�ciently using the block preconditioners
with GMRES method. The use of highly e�cient PETSc and HYPRE libraries allow us to
solve a very large system of equations on a single processor and their further testing on
multiprocessors is underway for larger problems. The accuracy of the proposed method is
veri�ed for the given test cases.
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